

UNIT 2

UNIT II

UNIT 2

Java AWT
Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based

applications in java. Java AWT components are platform-dependent i.e. components are

displayed according to the view of operating system. AWT is heavyweight i.e. its components

are using the resources of OS.

The java.awt package provides classes for AWT API such as TextField, Label, TextArea,

RadioButton, CheckBox, Choice, List etc.

Java AWT Hierarchy

The hierarchy of Java AWT classes are given,

https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list

UNIT 2

Container

The Container is a component in AWT that can contain another components like buttons,

textfields, labels etc. The classes that extends Container class are known as container such as

Frame, Dialog and Panel.

Window

The window is the container that have no borders and menu bars. We must use frame,

dialog or another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other

components like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have

other components like button, textfield etc.

https://www.javatpoint.com/java-awt-button

Unit 2

1

Useful Methods of Component class

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height) sets the size (width and height) of the

component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by

default false.

Unit 2

2

AWT (Abstract Window Toolkit):

AWT represents a class library to develop applications using GUI. The java.awt

package consists of classes and interfaces to develop GUIs.

Component: A component represents an object which is displayed pictorially on the screen

and interacts with the user.

Ex. Button, TextField, TextArea

Container: A Container is a subclass of Component; it has methods that allow other

components to be nested in it. A container is responsible for laying out (that is positioning) any

component that it contains. It does this with various layout managers.

Panel: Panel class is a subclass of Container and is a super class of Applet. When screen output

is redirected to an applet, it is drawn on the surface of the Panel object. In, essence panel is a

window that does not contain a title bar, menu bar or border.

Unit 2

3

Java AWT Example

To create simple awt example, we need a frame. There are two ways to create a frame in AWT.

 By extending Frame class (inheritance)

 By creating the object of Frame class (association)

AWT Example by Inheritance

A simple example of AWT where we are inheriting Frame class. Here, we are showing Button component

on the Frame.

import java.awt.*;

class First extends Frame

{

First()

{

Button b=new Button("click me");

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[])

{

First f=new First();

}

}

The setBounds(int xaxis, int yaxis, int width, int height) method is used in the above example

that sets the position of the awt button.

Unit 2

4

AWT Example by Association

A simple example of AWT where we are creating instance of Frame class. Here, we are showing

Button component on the Frame.

import java.awt.*;

class First2

{

First2()

{

Frame f=new Frame();

Button b=new Button("click me");

b.setBounds(30,50,80,30); f.add(b);

f.setSize(300,300);

f.setLayout(null); f.setVisible(true);

}

public static void main(String args[])

{

First2 f=new First2();

}

}

Unit 2

5

Java AWT Panel

The Panel is a simplest container class. It provides space in which an application can

attach any other component. It inherits the Container class. It doesn't have title bar.

AWT Panel class declaration

1. public class Panel extends Container implements Accessible

Java AWT Panel Example

import java.awt.*;

public class PanelExample

{

PanelExample()

{

Frame f= new Frame("Panel Example");

Panel panel=new Panel();

panel.setBounds(40,80,200,200);

panel.setBackground(Color.gray);

Button b1=new Button("Button 1");

b1.setBounds(50,100,80,30);

b1.setBackground(Color.yellow);

Button b2=new Button("Button 2");

b2.setBounds(100,100,80,30);

b2.setBackground(Color.green);

panel.add(b1); panel.add(b2);

Unit 2

6

f.add(panel);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new PanelExample();

}

}

Output:

Java AWT Dialog

The Dialog control represents a top level window with a border and a title used to take

some form of input from the user. It inherits the Window class. Unlike Frame, it doesn't have

maximize and minimize buttons.

Frame vs Dialog

Frame and Dialog both inherits Window class. Frame has maximize and minimize buttons

but Dialog doesn't have.

AWT Dialog class declaration

1. public class Dialog extends Window

Java AWT Dialog Example

import java.awt.*;

https://www.javatpoint.com/java-awt-button

Unit 2

7

import java.awt.event.*;

public class DialogExample

{

private static Dialog d;

DialogExample()

{

Frame f= new Frame();

d = new Dialog(f , "Dialog Example", true);

d.setLayout(new FlowLayout());

Button b = new Button ("OK");

b.addActionListener (new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

DialogExample.d.setVisible(false);

}

});

d.add(new Label ("Click button to continue."));

d.add(b);

d.setSize(300,300);

d.setVisible(true);

}

public static void main(String args[])

{

new DialogExample();

}

}

Output:

Unit 2

8

Java AWT Button

The button class is used to create a labeled button that has platform independent

implementation. The application result in some action when the button is pushed.

AWT Button Class declaration

1. public class Button extends Component implements Accessible

Java AWT Button Example

import java.awt.*;

public class ButtonExample

{

public static void main(String[] args)

{

Frame f=new Frame("Button Example");

Button b=new Button("Click Here");

b.setBounds(50,100,80,30);

f.add(b);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

Java AWT Button Example with ActionListener

import java.awt.*;

import java.awt.event.*;

public class ButtonExample

{

public static void main(String[] args)

Unit 2

9

{

Frame f=new Frame("Button Example");

final TextField tf=new TextField();

tf.setBounds(50,50, 150,20);

Button b=new Button("Click Here");

b.setBounds(50,100,60,30);

b.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

tf.setText("Welcome to Javatpoint.");

}

});

f.add(b);f.add(tf);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

Java AWT Label

The object of Label class is a component for placing text in a container. It is used to display

a single line of read only text. The text can be changed by an application but a user cannot edit it

directly.

AWT Label Class Declaration

1. public class Label extends Component implements Accessible

Java Label Example

import java.awt.*;

class LabelExample

https://www.javatpoint.com/object-and-class-in-java

Unit 2

1

0

{

public static void main(String args[])

{

Frame f= new Frame("Label Example");

Label l1,l2;

l1=new Label("First Label.");

l1.setBounds(50,100, 100,30);

l2=new Label("Second Label.");

l2.setBounds(50,150, 100,30);

f.add(l1); f.add(l2);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

Java AWT Label Example with ActionListener

import java.awt.*;

import java.awt.event.*;

public class LabelExample extends Frame implements ActionListener

{

TextField tf; Label l; Button b;

LabelExample()

{

tf=new TextField();

tf.setBounds(50,50, 150,20);

l=new Label();

l.setBounds(50,100, 250,20);

Unit 2

1

1

b=new Button("Find IP");

b.setBounds(50,150,60,30);

b.addActionListener(this);

add(b);add(tf);add(l);

setSize(400,400);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e)

{

Try

{

String host=tf.getText();

String ip=java.net.InetAddress.getByName(host).getHostAddress();

l.setText("IP of "+host+" is: "+ip);

}

catch(Exception ex){System.out.println(ex);

}

}

public static void main(String[] args)

{

new LabelExample();

}

}

Output:

Unit 2

1

2

Java AWT TextField

The object of a TextField class is a text component that allows the editing of a single line

text. It inherits TextComponent class.

AWT TextField Class Declaration

1. public class TextField extends TextComponent

Java AWT TextField Example

import java.awt.*;

class TextFieldExample

{

public static void main(String args[])

{

Frame f= new Frame("TextField Example");

TextField t1,t2;

t1=new TextField("Welcome to Javatpoint.");

t1.setBounds(50,100, 200,30);

t2=new TextField("AWT Tutorial");

t2.setBounds(50,150, 200,30);

f.add(t1); f.add(t2);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

Java AWT TextArea

The object of a TextArea class is a multi line region that displays text. It allows the

editing of multiple line text. It inherits TextComponent class.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java

Unit 2

1

3

AWT TextArea Class Declaration

1. public class TextArea extends TextComponent

Java AWT TextArea Example

import java.awt.*;

public class TextAreaExample

{

TextAreaExample()

{

Frame f= new Frame();

TextArea area=new TextArea("Welcome to javatpoint");

area.setBounds(10,30, 300,300);

f.add(area);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new TextAreaExample();

}

}

Output:

Unit 2

1

4

Java AWT Checkbox

The Checkbox class is used to create a checkbox. It is used to turn an option on (true) or off

(false). Clicking on a Checkbox changes its state from "on" to "off" or from "off" to "on".

AWT Checkbox Class Declaration

1. public class Checkbox extends Component implements ItemSelectable, Accessible

Java AWT Checkbox Example

import java.awt.*;

public class CheckboxExample

{

CheckboxExample()

{

Frame f= new Frame("Checkbox Example");

Checkbox checkbox1 = new Checkbox("C++");

checkbox1.setBounds(100,100, 50,50);

Checkbox checkbox2 = new Checkbox("Java", true);

checkbox2.setBounds(100,150, 50,50);

f.add(checkbox1);

f.add(checkbox2);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new CheckboxExample();

}

}

Output:

Java AWT Choice

Unit 2

1

5

The object of Choice class is used to show popup menu of choices. Choice selected by

user is shown on the top of a menu. It inherits Component class.

AWT Choice Class Declaration

1. public class Choice extends Component implements ItemSelectable, Accessible

Java AWT Choice Example

import java.awt.*;

public class ChoiceExample

{

ChoiceExample()

{

Frame f= new Frame();

Choice c=new Choice();

c.setBounds(100,100, 75,75);

c.add("Item 1");

c.add("Item 2");

c.add("Item 3");

c.add("Item 4");

c.add("Item 5");

f.add(c);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new ChoiceExample();

}

}

Output:

Java AWT List

https://www.javatpoint.com/java-awt-popupmenu

Unit 2

1

6

The object of List class represents a list of text items. By the help of list, user can choose

either one item or multiple items. It inherits Component class.

AWT List class Declaration

1. public class List extends Component implements ItemSelectable, Accessible

Java AWT List Example

import java.awt.*;

public class ListExample

{

ListExample()

{

Frame f= new Frame();

List l1=new List(5);

l1.setBounds(100,100, 75,75);

l1.add("Item 1");

l1.add("Item 2");

l1.add("Item 3");

l1.add("Item 4");

l1.add("Item 5");

f.add(l1);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new ListExample();

}

}

Output:

Java AWT Scrollbar

Unit 2

1

7

The object of Scrollbar class is used to add horizontal and vertical scrollbar. Scrollbar is a

GUI component allows us to see invisible number of rows and columns.

AWT Scrollbar class declaration

1. public class Scrollbar extends Component implements Adjustable, Accessible

Java AWT Scrollbar Example

import java.awt.*;

class ScrollbarExample

{

ScrollbarExample()

{

Frame f= new Frame("Scrollbar Example");

Scrollbar s=new Scrollbar();

s.setBounds(100,100, 50,100);

f.add(s);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new ScrollbarExample();

}

}

Output:

Java AWT MenuItem and Menu

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/gui-full-form

Unit 2

1

8

The object of MenuItem class adds a simple labeled menu item on menu. The items used in

a menu must belong to the MenuItem or any of its subclass.

The object of Menu class is a pull down menu component which is displayed on the

menu bar. It inherits the MenuItem class.

AWT MenuItem class declaration

1. public class MenuItem extends MenuComponent implements Accessible

AWT Menu class declaration

1. public class Menu extends MenuItem implements MenuContainer, Accessible

Java AWT MenuItem and Menu Example

import java.awt.*;

class MenuExample

{

MenuExample()

{

Frame f= new Frame("Menu and MenuItem Example");

MenuBar mb=new MenuBar();

Menu menu=new Menu("Menu");

Menu submenu=new Menu("Sub Menu");

MenuItem i1=new MenuItem("Item 1");

MenuItem i2=new MenuItem("Item 2");

MenuItem i3=new MenuItem("Item 3");

MenuItem i4=new MenuItem("Item 4");

MenuItem i5=new MenuItem("Item 5");

menu.add(i1);

menu.add(i2);

menu.add(i3);

submenu.add(i4);

submenu.add(i5);

menu.add(submenu);

mb.add(menu);

f.setMenuBar(mb);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new MenuExample();

}

}

Unit 2

1

9

Output:

Window: A window represents a rectangular area on the screen without any borders or title

bar. The Window class create a top-level window.

Frame: It is a subclass of Window and it has title bar, menu bar, border and resizing

windows.

Delegation Event Model:

The modern approach (from version 1.1 onwards) to handle events is based on the

delegation event model. Its concept is quite simple: a source generates an event and sends it

to one or more listeners.

In this scheme, the listener simply waits until it receives an event. Once an event is received,

the listener processes the event and then returns. The advantage of this design is that the

application logic that processes events is cleanly separated from the user interface logic that

generates those events.

Unit 2

2

0

A user interface element is able to “delegate” the processing of an event to a separate

piece of code. In the delegation event model, listeners must register with a source in order to

receive an event notification. This provides an important benefit: notifications are sent only to

listeners that want to receive them.

Events: An event is an object that describes a state change in a source. It can be generated as

a consequence of a person interacting with the elements in a GUI. Some of the

activities that cause events to be generated are pressing a button, entering a character

via the keyboard, selecting an item in a list, and clicking the mouse.

Event Sources: A source is an object that generates an event. Generally sources are

components. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive

notifications about a specific type of event. Each type of event has its own registration

method. Here is the general form:

public void addTypeListener (TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For

example, the method that registers a keyboard event listener is called addKeyListener().

Unit 2

2

1

A source must also provide a method that allows a listener to unregister an

interest in a specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Event Listeners: A listener is an object that is notified when an event occurs. It has

two major requirements.

1. It must have been registered with one or more sources to receive
notifications aboutspecific types of events.

2. It must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found in

java.awt.event package.

Sources of Events:

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked;

Menu item
Generates action events when a menu item is selected; generates item

events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window
Generates window events when a window is activated, closed,

deactivated, deiconified, iconified, opened, or quit.

Event Classes and Listener Interfaces:

The java.awt.event package provides many event classes and Listener interfaces for

event handling. At the root of the Java event class hierarchy is EventObject, which is in

java.util. It is the super class for all events. Its one constructor is shown here:

EventObject(Object src) - Here, src is the object that generates this event.

EventObject contains two methods:

getSource() - returns the source of the event.
toString() - toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass of

EventObject. It is the superclass (either directly or indirectly) of all AWT-based events used

by the delegation event model. Its getID() method can be used to determine the type of the

event. The signature of this method is shown here:

int getID()
.

Unit 2

2

2

The package java.awt.event defines many types of events that are generated by various user

interface elements

Event Class Description Listener Interface

ActionEvent

Generated when a button is pressed, a list

ActionListener item is double-clicked, or a menu item is

selected.

AdjustmentEvent Generated when a scroll bar is manipulated. AdjustmentListener

ComponentEvent
Generated when a component is hidden,

ComponentListener
moved, resized, or becomes visible.

ContainerEvent
Generated when a component is added to or

ContainerListener
removed from a container.

FocusEvent
Generated when a component gains or

FocusListener
losses keyboard focus.

InputEvent
Abstract super class for all component input
event classes.

ItemEvent
Generated when a check box or list item is

ItemListener
clicked

KeyEvent
Generated when input is received from the

KeyListener
keyboard.

MouseEvent

Generated when the mouse is dragged,

moved, clicked, pressed, or released; MouseListener and

also generated when the mouse enters or MouseMotionListener

exits a component.

TextEvent
Generated when the value of a text area or

TextListener
text field is changed.

WindowEvent

Generated when a window is activated,

WindowListener closed, deactivated, deiconified, iconified,

opened, or quit.

Useful Methods of Component class:

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height)
sets the size (width and height) of the

component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status)
changes the visibility of the component, by

default false.

Unit 2

2

3

The ActionEvent Class:

An ActionEvent is generated when a button is pressed, a list item is double-clicked, or

a menu item is selected.

The ActionEvent class defines four integer constants that can be used to identify any

modifiers associated with an action event: ALT_MASK, CTRL_MASK, META_MASK (Ex.

Escape) , and SHIFT_MASK.

ActionEvent has these three constructors:

o ActionEvent(Object src, int type, String cmd)

o ActionEvent(Object src, int type, String cmd, int modifiers)

o ActionEvent(Object src, int type, String cmd, long when, int modifiers)

You can obtain the command name for the invoking ActionEvent object by using

the getActionCommand() method, shown here:

String getActionCommand()

The AdjustmentEvent Class:

An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events.

BLOCK_DECREMENT
The user clicked inside the scroll bar to decrease its

value.

BLOCK_INCREMENT
The user clicked inside the scroll bar to increase its

value.

TRACK The slider was dragged.

UNIT_DECREMENT
The button at the end of the scroll bar was clicked to

decrease its value.

UNIT_INCREMENT
The button at the end of the scroll bar was clicked to

increase its value.

The ComponentEvent Class:

A ComponentEvent is generated when the size, position, or visibility of a component

is changed. There are four types of component events. The ComponentEvent class defines

integer constants that can be used to identify them:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,

FocusEvent, KeyEvent, MouseEvent, and WindowEvent, among others.

The getComponent() method returns the component that generated the event. It is

shown here:

Component getComponent()

Unit 2

2

4

The ContainerEvent Class:

A ContainerEvent is generated when a component is added to or removed from a

container. There are two types of container events. The ContainerEvent class defines

constants that can be used to identify them: COMPONENT_ADDED and COMPONENT_REMOVED.

The FocusEvent Class:

A FocusEvent is generated when a component gains or loses input focus. These

events are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

The InputEvent Class:

The abstract class InputEvent is a subclass of ComponentEvent and is the

superclass for component input events. Its subclasses are KeyEvent and MouseEvent.

InputEvent defines several integer constants that represent any modifiers, such as the

control key being pressed, that might be associated with the event. Originally, the InputEvent

class defined the following eight values to represent the modifiers:

ALT_MASK ALT_GRAPH_MASK BUTTON2_MASK BUTTON3_MASK

BUTTON1_MASK CTRL_MASK META_MASK SHIFT_MASK

However, because of possible conflicts between the modifiers used by keyboard events and

mouse events, and other issues, the following extended modifier values were added:

ALT_DOWN_MASK ALT_GRAPH_DOWN_MASK BUTTON1_DOWN_MASK

BUTTON2_DOWN_MASK BUTTON3_DOWN_MASK CTRL_DOWN_MASK

META_DOWN_MASK SHIFT_DOWN_MASK

The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of key

events, which are identified by these integer constants: KEY_PRESSED,

KEY_RELEASED, and KEY_TYPED.

The first two events are generated when any key is pressed or released. The last event

occurs only when a character is generated. Remember, not all keypresses result in characters.

For example, pressing shift does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example,

VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers

and letters.

Unit 2

2

5

The MouseEvent Class:

There are eight types of mouse events. The MouseEvent class defines the following

integer constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse

MOUSE_DRAGGED The user dragged the mouse

MOUSE_ENTERED The mouse entered a component

MOUSE_EXITED The mouse exited from a

component.

MOUSE_MOVED The mouse moved

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

Two commonly used methods in this class are getX() and getY(). These return the X

and Y coordinates of the mouse within the component when the event occurred. Their forms

are shown here:

int getX()
int getY()

The TextEvent Class:

Instances of this class describe text events. These are generated by text fields and text

areas when characters are entered by a user or program. TextEvent defines the integer

constant TEXT_VALUE_CHANGED.

The WindowEvent Class:

The WindowEvent class defines integer constants that can be used to identify

different types of events:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window was iconified.

WINDOW_ICONIFIED The window gained input focus.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

Unit 4 Event Handling

EventListener Interfaces:

An event listener registers with an event source to receive notifications about the

events of a particular type. Various event listener interfaces defined in the java.awt.event

package are given below:

Interface Description

ActionListener

Defines the actionPerformed() method to receive and process

action events.

void actionPerformed(ActionEvent ae)

MouseListener

Defines five methods to receive mouse events, such as when a
mouse is clicked, pressed, released, enters, or exits a component

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

MouseMotionListener

Defines two methods to receive events, such as when a mouse is
dragged or moved.

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

AdjustmentListner

Defines the adjustmentValueChanged() method to receive and

process the adjustment events.

void adjustmentValueChanged(AdjustmentEvent ae)

TextListener

Defines the textValueChanged() method to receive and process an

event when the text value changes.

void textValueChanged(TextEvent te)

WindowListener

Defines seven window methods to receive events.
void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

ItemListener
Defines the itemStateChanged() method when an item has been

void itemStateChanged(ItemEvent ie)

WindowFocusListener

This interface defines two methods: windowGainedFocus() and
windowLostFocus(). These are called when a window gains or

loses input focus. Their general forms are shown here:

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

ComponentListener

This interface defines four methods that are invoked when a
component is resized, moved, shown, or hidden. Their general

forms are shown here:
void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

8

9

Unit 4 Event Handling

ContainerListener

This interface contains two methods. When a component is added

to a container, componentAdded() is invoked. When a

component is removed from a container, componentRemoved()

is invoked.

Their general forms are shown here:

void componentAdded(ContainerEvent ce)

void componentRemoved(ContainerEvent ce)

FocusListener

This interface defines two methods. When a component obtains
keyboard focus, focusGained() is invoked. When a component

loses keyboard focus, focusLost() is called. Their general forms

are shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

KeyListener

This interface defines three methods.
void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

Steps to perform Event Handling

Following steps are required to perform event handling:

1. Register the component with the Listener

2. Implement the concerned interface

Registration Methods:

For registering the component with the Listener, many classes provide the registration

methods. For example:

Button

o public void addActionListener(ActionListener a){}

MenuItem

o public void addActionListener(ActionListener a){}

TextField
o public void addActionListener(ActionListener a){}

o public void addTextListener(TextListener a){}
TextArea

o public void addTextListener(TextListener a){}

Checkbox

o public void addItemListener(ItemListener a){}

Choice

List

Mouse

o public void addItemListener(ItemListener a){}

o public void addActionListener(ActionListener a){}

o public void addItemListener(ItemListener a){}

o public void addMouseListener(MouseListener a){}

Unit 4 Event Handling

10

Handling Mouse Events Example Program:

// Demonstrate the mouse event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*; /*

<applet code="MouseEvents" width=300

height=100> </applet>

*/

public class MouseEvents extends Applet implements MouseListener, MouseMotionListener

{

String msg = "";
int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init()

{

addMouseListener(this);
addMouseMotionListener(this);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse

clicked."; repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse entered.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse exited.";
repaint();

}

// Handle button pressed.

public void mousePressed(MouseEvent me)

{
// save coordinates

mouseX = me.getX();

Unit 4 Event Handling

11

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me)

{

// save coordinates

mouseX =

me.getX(); mouseY

= me.getY(); msg =

"Up"; repaint();

}

// Handle mouse dragged.
public void mouseDragged(MouseEvent me)

{
// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " +
mouseY); repaint();

}

// Handle mouse moved.
public void mouseMoved(MouseEvent me)

{

// show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}

// Display msg in applet window at current X,Y

location. public void paint(Graphics g)

{

g.drawString(msg, mouseX, mouseY);

}
}

Output:

Unit 4 Event Handling

12

Handling Key Board Events:

// Demonstrate the key event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*; /*

<applet code="SampleKey" width=300 height=100>

</applet>

*/

public class SampleKey extends Applet implements KeyListener

{

String msg = "";

public void init() {

addKeyListener(this);

}
public void keyPressed(KeyEvent ke) {

showStatus("Key Down");

}

public void keyReleased(KeyEvent ke) {
showStatus("Key Up");

}
public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g) {

g.drawString(msg, 10, 20);

}

}

Output:

Unit 4 Event Handling

13

Handling Action Event Example:

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

/*
<applet code="ButtonEvent3" width=300 height=100>

</applet>

*/

public class ButtonEvent3 extends Applet implements ActionListener

{

Button a ;

String msg;

public void init()
{

a=new Button("PVPSIT");

add(a);

a.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)
{

String str=ae.getActionCommand();

if(str.equals("PVPSIT"))

msg="You pressed PVPSIT";

repaint();

}

public void paint(Graphics g)

{

g.drawString(msg,100,100);

}

}

Output:

Unit 4 Event Handling

14

Adapter Classes:

Java provides a special feature, called an adapter class, that can simplify the creation

of event handlers in certain situations. An adapter class provides an empty implementation of

all methods in an event listener interface. Adapter classes are useful when you want to receive

and process only some of the events that are handled by a particular event listener interface.

For example,

MouseListener MouseAdapter

void mouseClicked(MouseEvent me) void mouseClicked(MouseEvent me){ }
void mouseEntered(MouseEvent me) void mouseEntered(MouseEvent me) { }

void mouseExited(MouseEvent me) void mouseExited(MouseEvent me) { }

void mousePressed(MouseEvent me) void mousePressed(MouseEvent me) { }

void mouseReleased(MouseEvent me) void mouseReleased(MouseEvent me) { }

Table: Commonly used Listener Interfaces implemented by Adapter Classes

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*
<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet

{

public void init() {

addMouseListener(new MyMouseAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter
{

AdapterDemo ad;

public MyMouseAdapter(AdapterDemo ad)

{

this.ad = ad;

Unit 4 Event Handling

15

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{

ad.showStatus("Mouse clicked");

}

}

Inner Classes:

Inner class is a class defined within another class, or even within an expression.

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*
<applet code="InnerClassDemo" width=300 height=100>

</applet>

*/

public class InnerClassDemo extends Applet

{

String msg = "hello";

public void init() {

addKeyListener(new MyKeyIn());

}

class MyKeyIn extends KeyAdapter

{

public void keyPressed(KeyEvent ke) {

showStatus("Key Pressed");

}
}

public void paint(Graphics g) {

g.drawString(msg, 10, 20);

}
}

Anonymous Inner Classes:

An anonymous inner class is one that is not assigned a name.

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AInnerClassDemo" width=300 height=100>

</applet> */

Unit 4 Event Handling

16

public class AInnerClassDemo extends Applet

{

String msg = "hello";

public void init()

{

addKeyListener(new KeyAdapter(){

public void keyPressed(KeyEvent ke) {

showStatus("Key Pressed");

}

});

}

// Display keystrokes.

public void paint(Graphics g) {
g.drawString(msg, 10, 20);

}

}

Control Fundamentals:

The AWT supports the following types of controls:

Labels

Push buttons

Check boxes

Choice lists

Lists

Scroll bars

Text Editing

These controls are subclasses of Component

Adding and Removing Controls: To include a control in a window, you must add it to the

window. To do this, you must first create an instance of the desired control and then add it to

a window by calling add(), which is defined by Container. The General form is:

Component add(Component compObj)

Here, compObj is an instance of the control that you want to add. A reference to compObj

is returned.

Sometimes you will want to remove a control from a window when the control is no

longer needed. To do this, call remove(). This method is also defined by Container. Here is

one of its forms:

void remove(Component obj)

Here, obj is a reference to the control you want to remove. You can remove all controls by

calling removeAll().

The HeadlessException:

Most of the AWT controls have constructors that can throw a HeadlessException

when an attempt is made to instantiate a GUI component in a non-interactive environment

(such as one in which no display, mouse, or keyboard is present).

Unit 4 Event Handling

17

Labels:

A label is an object of type Label, and it contains a string, which it displays. Labels

are passive controls that do not support any interaction with the user. Label defines the

following constructors:

Label() throws HeadlessException Label(String str)

throws HeadlessException Label(String str, int how)

throws HeadlessException

The first version creates a blank label. The second version creates a label that contains the

string specified by str. This string is left-justified. The third version creates a label that contains

the string specified by str using the alignment specified by how. The value of how must be one of

these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

Using Buttons:

A push button is a component that contains a label and that generates an event when

it is pressed. Push buttons are objects of type Button. Button defines these two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a button that contains

str as a label.

After a button has been created, you can set its label by calling setLabel(). You

can retrieve its label by calling getLabel(). These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button

Example:

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

/*

<applet code="ButtonEvent1" width=300 height=100>

</applet>

*/

public class ButtonEvent1 extends Applet

{

Button b,b1;

public void init()

{

b=new Button("PVPSIT");

b1=new Button();

add(b);

add(b1);

} }

Unit 4 Event Handling

18

Check Boxes:

A check box is a control that is used to turn an option on or off. It consists of a small

box that can either contain a check mark or not. There is a label associated with each check

box that describes what option the box represents. Check boxes can be used individually or as

part of a group. Check boxes are objects of the Checkbox class.

Checkbox supports these constructors: Checkbox() throws

HeadlessException Checkbox(String str) throws

HeadlessException Checkbox(String str, boolean on)

throws HeadlessException

Checkbox(String str, boolean on, CheckboxGroup cbGroup) throws HeadlessException

Checkbox(String str, CheckboxGroup cbGroup, boolean on) throws HeadlessException

The first form creates a check box whose label is initially blank. The state of the

check box is unchecked. The second form creates a check box whose label is specified by str.

The state of the check box is unchecked. The third form allows you to set the initial state of

the check box. If on is true, the check box is initially checked; otherwise, it is cleared. The

fourth and fifth forms create a check box whose label is specified by str and whose group is

specified by cbGroup. If this check box is not part of a group, then cbGroup must be null.

The value of on determines the initial state of the check box.

Methods:

boolean getState() - To retrieve the current state of a check box

void setState(boolean on) - to set the state of a check box String

getLabel() – returns the label associated with check box void

setLabel(String str) – to set the label

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CheckboxDemo" width=240 height=200>

</applet>

*/

public class CheckboxDemo extends Applet implements ItemListener

{

String msg = "";

Checkbox m,f;

public void init()

{

m = new Checkbox("Male", true);

f = new Checkbox("Female");

add(m);

add(f);

Unit 4 Event Handling

19

m.addItemListener(this);

f.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";

g.drawString(msg, 6, 80); msg

= " Male: " + m.getState();

g.drawString(msg, 6, 100);

msg = " Female: " + f.getState();

g.drawString(msg, 6, 150);

}

}

CheckboxGroup:

It is possible to create a set of mutually exclusive check boxes in which one and only

one check box in the group can be checked at any one time. These check boxes are often

called radio buttons —only one button can be selected at any one time.

To create a set of mutually exclusive check boxes, you must first define the group to

which they will belong and then specify that group when you construct the check boxes.

Check box groups are objects of type CheckboxGroup.

Only the default constructor is defined, which creates an empty group.

Methods:

Checkbox getSelectedCheckbox() - which check box in a group is currently selected void

setSelectedCheckbox(Checkbox which) - which is the check box that you want to

be selected. The previously selected check box will be turned off

Example:

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CBGroup" width=240 height=200>

</applet>

*/

public class CBGroup extends Applet implements ItemListener

{

String msg = "";

Checkbox m,f;

Unit 4 Event Handling

20

CheckboxGroup cbg;

public void init()

{

cbg = new CheckboxGroup();

m = new Checkbox("Male", cbg, true); f

= new Checkbox("Female", cbg, false);

add(m);

add(f);

m.addItemListener(this);

f.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g)

{

msg = "Current selection: ";

msg += cbg.getSelectedCheckbox().getLabel();

g.drawString(msg, 6, 100);

}

}

Choice Controls:

The Choice class is used to create a pop-up list of items from which the user may

choose. Choice defines only the default constructor, which creates an empty list. To add a

selection to the list, call add(). It has this general form:

void add(String name) - name is the name of the item being added.

Items are added to the list in the order in which calls to add() occur.

Methods:

String getSelectedItem() – returns the item which is currently selected

int getSelectedIndex() - returns the index of the item. The first item is at index 0. By

default, the first item added to the list is selected.

int getItemCount() – returns number of items in the list
void select(int index) - to set the currently selected item with index void

select(String name) - to set the currently selected item with a string

String getItem(int index) – returns the name associated with the index

Example:

import java.awt.*;

import java.awt.event.*;

Unit 4 Event Handling

21

import java.applet.*;

/*

<applet code="ChoiceDemo" width=300

height=180> </applet>

*/

public class ChoiceDemo extends Applet implements ItemListener

{

Choice college ;

String msg = "";

public void init()

{

college = new Choice();

// add items to os list

college.add("PVPSIT");

college.add("BEC");

college.add("RVR&JC");

college.add("VRSEC");

add(college);

// register to receive item events

college.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current selections.

public void paint(Graphics g)

{

msg = "Selected College is: ";

msg += college.getSelectedItem();

g.drawString(msg, 6, 120);

}

}

List:

The List class provides a compact, multiple-choice, scrolling selection list. Unlike the

Choice object, which shows only the single selected item in the menu, a List object can be

constructed to show any number of choices in the visible window. It can also be created to

allow multiple selections.

List provides these constructors:

List() throws HeadlessException

Unit 4 Event Handling

22

List(int numRows) throws HeadlessException

List(int numRows, boolean multipleSelect) throws HeadlessException

The first version creates a List control that allows only one item to be selected at any

one time. In the second form, the value of numRows specifies the number of entries in the list

that will always be visible (others can be scrolled into view as needed). In the third form, if

multipleSelect is true, then the user may select two or more items at a time. If it is false, then

only one item may be selected.

To add a selection to the list, call add(). It has the following two forms:

void add(String name)

void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds items to the

end of the list. The second form adds the item at the index specified by index. Indexing

begins at zero. You can specify –1 to add the item to the end of the list.

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet implements ActionListener

{

List college;

String msg = "";

public void init()

{

college = new List(4,true);

college.add("PVPSIT");

college.add("BEC");

college.add("RVR&JC");

college.add("VRSEC");

//college.select(1);

add(college);

// register to receive action events

college.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

repaint();

}

Unit 4 Event Handling

23

// Display current selections.

public void paint(Graphics g)

{

msg="College Chosen is:";

int ind[];

ind = college.getSelectedIndexes();

for(int i=0; i<ind.length; i++)

msg += college.getItem(ind[i]) + " ";

g.drawString(msg, 6, 120);

}

}

TextField:

The TextField class implements a single-line text-entry area. Text fields allow the

user to enter strings and to edit the text using the arrow keys, cut and paste keys, and mouse

selections.

TextField is a subclass of TextComponent. TextField defines the following

constructors:

TextField() throws HeadlessException TextField(int

numChars) throws HeadlessException TextField(String str)

throws HeadlessException TextField(String str, int numChars)

throws HeadlessException

The first version creates a default text field. The second form creates a text field that

is numChars characters wide. The third form initializes the text field with the string contained

in str. The fourth form initializes a text field and sets its width.

Methods:

String getText() - To obtain the string currently contained in the text

field void setText(String str) - To set the text, here, str is the new string.

String getSelectedText() - returns currently selected text

void select(int startIndex, int endIndex) - selects the characters beginning at

startIndex and ending at endIndex –1.

boolean isEditable() – returns boolean value (true/false)

void setEditable(boolean canEdit) - if canEdit is true, the text may be changed. If it

is false, the text cannot be altered.

void setEchoChar(char ch) – specified echo character will be displayed in TextField

boolean echoCharIsSet() –returns true or false

char getEchoChar() – returns the echo character

Unit 4 Event Handling

24

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="TextFieldDemo" width=380 height=150>

</applet>

*/

public class TextFieldDemo extends Applet implements TextListener

{

TextField name, pass;

public void init()

{

Label namep = new Label("Name: ");

name = new TextField(12);

Label passp = new Label("Password: ");

pass = new TextField(8);

pass.setEchoChar('*');

add(namep);

add(name);

add(passp);

add(pass);

// register to receive action events

name.addTextListener(this);

pass.addTextListener(this);

}

// User pressed Enter.

public void textValueChanged(TextEvent ae)

{

repaint();

}

public void paint(Graphics g)

{

g.drawString("Name: " + name.getText(), 6, 60);

g.drawString("Password: " + pass.getText(), 6, 100);

g.drawString("Selected text in name: "+ name.getSelectedText(), 6, 80);

}

}

Unit 4 Event Handling

25

TextArea:

Sometimes a single line of text input is not enough for a given task. To handle these

situations, the AWT includes a simple multiline editor called TextArea. Following are the

constructors for TextArea:

TextArea() throws HeadlessException

TextArea(int numLines, int numChars) throws HeadlessException

TextArea(String str) throws HeadlessException

TextArea(String str, int numLines, int numChars) throws HeadlessException

TextArea(String str, int numLines, int numChars, int sBars) throws

HeadlessException

Here, numLines specifies the height, in lines, of the text area, and numChars specifies

its width, in characters. Initial text can be specified by str. In the fifth form, you can specify

the scroll bars that you want the control to have. sBars must be one of these values:

SCROLLBARS_BOTH

SCROLLBARS_NONE

SCROLLBARS_HORIZONTAL_ONLY

SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the getText(),

setText(), getSelectedText(), select(), isEditable(), and setEditable() methods described

in the preceding section.

TextArea adds the following methods:

void append(String str) - appends the string specified by str to the end

of the current void insert(String str, int index) - inserts the string

passed in str at the specified index void replaceRange(String str, int

startIndex, int endIndex) - replaces the characters from startIndex to

endIndex–1, with the replacement text passed in str

Example:

import java.awt.*;

import java.applet.*;

/*

<applet code="TextAreaDemo" width=300 height=250>

</applet>

*/

public class TextAreaDemo extends Applet

{

public void init()

{

String val = "Java 7 is the latest version of the most widely-used computer

language for Internet programming.";

TextArea text = new TextArea(val, 10, 30);

add(text);

}

}

26

Managing Scroll Bars:

Scrollbar control represents a scroll bar component in order to enable user to select

from range of values.

Scroll bars are encapsulated by the Scrollbar class. Scrollbar defines the following

constructors:

Scrollbar() throws HeadlessException

Scrollbar(int style) throws HeadlessException

Scrollbar(int style, int initialValue, int thumbSize, int min, int max) throws

HeadlessException

The first form creates a vertical scroll bar. The second and third forms allow you to

specify the orientation of the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll bar

is created. If style is Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the third form

of the constructor, the initial value of the scroll bar is passed in initialValue. The number of

units represented by the height of the thumb is passed in thumbSize. The minimum and

maximum values for the scroll bar are specified by min and max.

Methods:

void setValues(int initialValue, If we construct a scroll bar by using one of the

int thumbSize, int min, int max) first two constructors, then you need to set its

 parameters by using setValues()

int getValue() To get the current value

void setValue(int newValue) TO set the current value

int getMinimum() To get the minimum value

int getMaximum() To get the maximum value

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SBDemo" width=300 height=200>

</applet>

*/

public class SBDemo extends Applet
{

Scrollbar vertSB, horzSB;

public void init()

{

vertSB = new Scrollbar(Scrollbar.VERTICAL, 0, 1, 0, 100);
horzSB = new Scrollbar(Scrollbar.HORIZONTAL, 0, 1, 0, 100);

add(vertSB);

add(horzSB);

}

}

27

Layout Manager

A layout manager is a class that is useful to arrange components in a particular

manner in container or a frame.

Java soft people have created a LayoutManager interface in java.awt package which is

implemented in various classes which provide various types of layouts to arrange the

components. The following classes represents the layout managers in Java:

1. FlowLayout

2. BorderLayout

3. GridLayout

4. CardLayout

5. GridBagLayout

6. BoxLayout

To set a particular layout, we should first create an object to the layout class and pass

the object to setLayout() method. For example, to set FlowLayout to the container:

FlowLayout obj=new FlowLayout();

c. setLayout(obj); // assume c is container

FlowLayout:

FlowLayout is useful to arrange the components in a line one after the other. When a

line is filled with components, they are automatically placed in a next line. This is the default

layout in applets.

Constructors:

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centres components and leaves five

pixels of space between each component. The second form lets you specify how each line is

aligned. Valid values for how are as follows:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

The third constructor allows you to specify the horizontal and vertical space left

between components in horz and vert, respectively.

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="FlowLayoutDemo" width=240

height=200>
</applet>

*/

28

public class FlowLayoutDemo extends Applet implements ItemListener

{

String msg="";

Checkbox m,f;

public void init()

{

setLayout(new FlowLayout(FlowLayout.RIGHT));

m = new Checkbox("Male", true); f = new

Checkbox("Female");

add(m);

add(f);

m.addItemListener(this);

f.addItemListener(this);

}
public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.
public void paint(Graphics g) {

msg = "Current state: ";
g.drawString(msg, 6, 80); msg

= " Male: " + m.getState();
g.drawString(msg, 6, 100);

msg = " Female: " + f.getState();

g.drawString(msg, 6, 150);

}

}

(or)

/*

<applet code="FlowLayoutDemo" width=240 height=200>

</applet> */

public class FlowLayoutDemo extends Applet

{

Checkbox m,f;
public void init()

{

setLayout(new

FlowLayout(FlowLayout.RIGHT));

m = new Checkbox("Male", true);

f = new Checkbox("Female");

add(m);

add(f);

}

}

29

BorderLayout:

BorderLayout is useful to arrange the components in the four borders of the frame as

well as in the centre. The borders are identified with the names of the directions. The top

border is specified as ‘North’, the right side border as ‘East’, the bottom one as ‘South’ and

the left one as ‘West’. The centre is represented as ‘Centre’.

Constructors:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively.

BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER

BorderLayout.SOUTH

BorderLayout.EAST

BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form of

add(), which is defined by Container:

void add(Component compObj, Object region)

Here, compObj is the component to be added, and region specifies where the component

will be added.

Example:

import java.applet.*;

import java.util.*;

/*

<applet code="BorderLayoutDemo" width=400 height=200>

</applet>

*/

public class BorderLayoutDemo extends

Applet

{

public void init()

{

setLayout(new BorderLayout());

add(new Button("Top"),BorderLayout.NORTH);

add(new Button("Bottom"),BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

add(new Button("Left"), BorderLayout.WEST);

String msg = "PVPSIT started by SAGTE in 1998.\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

}

30

GridLayout:

GridLayout is useful to divide the container into a 2D grid form that contains several

rows and columns. The container is divided into equal-sized rectangle; and one component is

placed in each rectangle.

Constructors:

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a grid

layout with the specified number of rows and columns. The third form allows you to specify

the horizontal and vertical space left between components in horz and vert, respectively.

Either numRows or numColumns can be zero. Specifying numRows as zero allows for

unlimitedlength columns. Specifying numColumns as zero allows for unlimited-length rows.

Example:

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo2" width=150 height=150>

</applet>

*/

public class GridLayoutDemo2 extends Applet

{

Button b1,b2,b3,b4;

public void init()

{

setLayout(new GridLayout(2, 2));

b1=new Button("PVP");

b2=new Button("BEC");

b3=new Button("VRSEC");

b4=new Button("RVR&JC");

add(b1);

add(b2);

add(b3);

add(b4);

}

}

or

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo" width=300 height=200>

31

</applet>

*/

public class GridLayoutDemo extends Applet

{

static final int n = 4;

public void init() {

setLayout(new GridLayout(n, n));

for(int i = 0; i < n; i++) { for(int

j = 0; j < n; j++) {

int k = i * n + j;

if(k > 0)

add(new Button("" + k));

}

}

}

}

CardLayout:

A CardLayout object is a layout manager which treats each component as a card.

Only one card is displayed at a time, and the container acts as a stack of cards. The first

component added to a CardLayout object is visible component when the container is first

displayed.

CardLayout provides these two constructors:

CardLayout()

CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to specify

the horizontal and vertical space left between components in horz and vert, respectively.

Use of a card layout requires a bit more work than the other layouts. The cards are

typically held in an object of type Panel. This panel must have CardLayout selected as its

layout manager. Finally, you add this pane to the window.

Once these steps are complete, you must provide some way for the user to select

between cards. One common approach is to include one push button for each card in the deck.

When card panels are added to a panel, they are usually given a name. Thus, most of the time,

you will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name)

or

void add(Object name, Component panelObj)

Here, name is a string that specifies the name of the card whose panel is specified by

panelObj. After you have created a deck, your program activates a card by calling one of the

following methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)
void show(Container deck, String cardName)

32

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CardLayoutDemo" width=300 height=100>

</applet>

*/

public class CardLayoutDemo extends Applet implements ActionListener

{

Button b1,b2,b3,b4;

Panel p;

CardLayout card;

public void init()

{

b1 = new Button("Button 1");

b2 = new Button("Button 2");

b3 = new Button("Button 3");

b4 = new Button("Button 4");

p=new Panel();

card=new CardLayout(20,20);

p.setLayout(card);

p.add("First",b1);

p.add("Second",b2);

p.add("Third",b3);

p.add("Fourth",b4);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

b4.addActionListener(this);

add(p);

}

public void actionPerformed(ActionEvent ae)

{

card.next(p);

}

}

GridBagLayout:

A GridBagLayout class represents grid bag layout manager where the components are

arranged in rows and columns. In this layout the component can span more than one row or

column and the size of the component can be adjusted to fit the display area.

33

When positioning the components by using grid bag layout, it is necessary to apply

some constraints or conditions on the components regarding their position, size and place in

or around the components etc. Such constraints are specified using GridBagConstrinats class.

In order to create GridBagLayout, we first instantiate the GridBagLayout class by

using its only no-argument constructor

GridBagLayout layout=new GridBagLayout();

setLayout(layout);

and defining it as the current layout manager.

To apply constraints on the components, we should first create an object to

GridBagConstrinats class, as

GridBagConstrinats gbc =new GridBagConstrinats();

This will create constraints for the components with default value. The other way to

specify the constraints is by directly passing their values while creating the

GridBagConstrinats as

GridBagConstrinats gbc= new GridBagConstrinats(

int gridx, int gridy, int gridwidth, int gridheight, double weightx, double

weighty, int anchor, int fill, Insets insets, int ipadx, int ipady);

To set the constraints use setConstraints() method in GridBagConstrinats class and its

prototype

void setConstraints(Component comp, GridBagConstraints cons);

Constraint fields Defined by GridBagConstraints:

Field Purpose

int anchor

Specifies the location of a component within a cell. The

default is GridBagConstraints.CENTER. Others are

GridBagConstraints.EAST

GridBagConstraints.WEST

GridBagConstraints.SOUTH

GridBagConstraints.NORTH

GridBagConstraints.NORTHEAST

GridBagConstraints.NORTHWEST

GridBagConstraints.SOUTHEAST

GridBagConstraints.SOUTHWEST

int gridx
Specifies the X coordinate of the cell to which the

component will be added.

int gridy
Specifies the Y coordinate of the cell to which the

component will be added.

int gridheight
Specifies the height of component in terms of cells. The

default is 1.

int gridwidth
Specifies the width of component in terms of cells. The

default is 1.

double weightx Specifies a weight value that determines the horizontal

34

int ipadx

Unit 4 Event Handling

 spacing between cells and the edges of the container that
 holds them. The default value is 0.0. The greater the weight,
 the more space that is allocated.
 Specifies a weight value that determines the vertical spacing

double weighty between cells and the edges of the container that holds them.

 The default value is 0.0.
 Specifies extra horizontal space that surrounds a component
 within a cell. The default is 0.

int ipady
Specifies extra vertical space that surrounds a component

within a cell. The default is 0.
 Specifies how a component is resized if the component is
 smaller than its cell. Valid values are

int fill
GridBagConstraints.NONE (the default)

GridBagConstraints.HORIZONTAL

 GridBagConstraints.VERTICAL
 GridBagConstraints.BOTH.
 Small amount of space between the container that holds
 your components and the window that contains it. Default
 insets are all zero.

 Ex. Insets i=new Insets(5,10,20,15);

Insets insets

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*
<applet code="GridBagDemo" width=200 height=100>

</applet>

*/

public class GridBagDemo extends Applet

{

Button b1,b2,b3,b4,b5,b6,b7,b8 ;

public void init() {

Unit 5 Introduction to Swings & Networking

1

Unit 4 Event Handling

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

// Define check boxes.

b1=new Button("Button 1");

b2=new Button("Button 2");

b3=new Button("Button 3");

b4=new Button("Button 4");

b5=new Button("Button 5");

b6=new Button("Button 6");

b7=new Button("Button 7");

b8=new Button("Button 8");

gbc.gridx=0;

gbc.gridy=0;

gbag.setConstraints(b1,gbc);
gbc.gridx=1;
gbc.gridy=0;

gbag.setConstraints(b2,gbc);

gbc.gridx=2;

gbc.gridy=0;

gbag.setConstraints(b3,gbc);

gbc.gridx=0;

gbc.gridy=1;

gbag.setConstraints(b4,gbc);

gbc.gridx=1;

gbc.gridy=1;

gbc.gridwidth=2;

gbc.gridheight=2;

gbc.ipady=25;

gbc.ipadx=20;

gbc.fill=GridBagConstraints.BOTH;

gbag.setConstraints(b5,gbc);

gbc.gridx=0;

gbc.gridy=2;

gbc.anchor=GridBagConstraints.WEST;

gbc.ipady= 0;

gbc.ipadx= 0;

gbc.fill=GridBagConstraints.NONE;

gbag.setConstraints(b7,gbc);

add(b1);

add(b2);

add(b3);

add(b4);

add(b5);

add(b7);

}

Unit 5 Introduction to Swings & Networking

2

}

Unit 5 Introduction to Swings & Networking

3

Swings:

AWT is used for creating GUI in Java. However, the AWT components are internally

depends on native methods like C functions and operating system equivalent and hence

problems related to portability arise (look and feel. Ex. Windows window and MAC

window). And, also AWT components are heavy weight. It means AWT components take

more system resources like memory and processor time.

Due to this, Java soft people felt it is better to redevelop AWT package without

internally taking the help of native methods. Hence all the classes of AWT are extended to

form new classes and a new class library is created. This library is called JFC (Java

Foundation Classes).

Java Foundation Classes (JFC):

JFC is an extension of original AWT. It contains classes that are completely portable,

since the entire JFC is developed in pure Java. Some of the features of JFC are:

1. JFC components are light-weight: Means they utilize minimum resources.

2. JFC components have same look and feel on all platforms. Once a component is

created, it looks same on any OS.

3. JFC offers “pluggable look and feel” feature, which allows the programmer to

change look and feel as suited for platform. For, ex if the programmer wants to

display window-style button on Windows OS, and Unix style buttons on Unix, it is

possible.

4. JFC does not replace AWT, but JFC is an extension to AWT. All the classes of JFC

are derived from AWT and hence all the methods in AWT are also applicable in

JFC.

So, JFC represents class library developed in pure Java which is an extension to AWT and

swing is one package in JFC, which helps to develop GUIs and the name of the package is

import javax.swing.*;

Here x represents that it is an ‘extended package’ whose classes are derived from

AWT package.

MVC Architecture:

In MVC terminology,

 Model corresponds to the state information associated
with the component (data).

For example, in the case of a check box, the model

contains a field that indicates if the box is checked or

unchecked.

 The view visual appearance of the component based

upon model data.

Unit 5 Introduction to Swings & Networking

4

 The controller acts as an interface between view and model. It intercepts all

the requests i.e. receives input and commands to Model / View to change

accordingly.

Although the MVC architecture and the principles behind it are conceptually sound,

the high level of separation between the view and the controller is not beneficial for Swing

components. Instead, Swing uses a modified version of MVC that combines the view and the

controller into a single logical entity called the UI delegate. For this reason, Swing’s approach

is called either the Model-Delegate architecture or the Separable Model architecture.

Figure : With Swing, the view and the controller are combined into a UI-delegate object

So let’s review: each Swing component contains a model and a UI delegate.

The model is responsible for maintaining information about the component’s state.

The UI delegate is responsible for maintaining information about how to draw the

component on the screen. In addition, the UI delegate reacts to various events.

Difference between AWT and Swings:

AWT Swing

AWT stands for Abstract Window Toolkit Swing is a part of Java Foundation

Class (JFC)

Heavy weight Light weight

AWT components requires more space Swing Component requires less space

Slow as compared to Swing Fast as compatred to AWT

AWT component are platform dependent so

there is Look and feel changes to OS

Swing components are platform

independent & Look and feel remains

constant in all platrforms

Doesn’t Follow MVC Architecture Follow MVC architecture

AWT contains less no of components Swing contains large no of components

Not pure Java based Pure Java based

Unit 5 Introduction to Swings & Networking

5

AWT components of Platform Dependent Swing component are

Platform Indepenedent

AWT components comes under

java.awt package

Swing component comes under

javax.swing package

Unit 5 Introduction to Swings & Networking

3

Dr. Suresh Yadlapati, Dept of IT, PVPSIT.

Components and Containers:

A Swing GUI consists of two key items: components and containers.

However, this distinction is mostly conceptual because all containers are also

components. The difference between the two is found in their intended purpose: As the term

is commonly used, a component is an independent visual control, such as a push button or

slider. A container holds a group of components. Thus, a container is a special type of

component that is designed to hold other components.

Furthermore, in order for a component to be displayed, it must be held within a

container. Thus, all Swing GUIs will have at least one container. Because containers are

components, a container can also hold other containers. This enables Swing to define what

is called a containment hierarchy, at the top of which must be a top-level container.

Components:

In general, Swing components are derived from the JComponent class. JComponent

provides the functionality that is common to all components. For example, JComponent

supports the pluggable look and feel. JComponent inherits the AWT classes Container and

Component. All of Swing’s components are represented by classes defined within the

package javax.swing. The following figure shows hierarchy of classes of javax.swing.

Unit 5 Introduction to Swings & Networking

Containers:

Swing defines two types of containers.

1. Top-level containers/ Root containers: JFrame, JApplet,JWindow, and JDialog.

As the name implies, a top-level container must be at the top of a containment

hierarchy. A top-level container is not contained within any other container.

Furthermore, every containment hierarchy must begin with a top-level container.

The one most commonly used for applications are JFrame and JApplet.

Unlike Swing’s other components, the top-level containers are heavyweight.

Because they inherit AWT classes Component and Container.

Whenever we create a top level container four sub-level containers are

automatically created:

 Glass pane (JGlass)

 Root pane (JRootPane)

 Layered pane (JLayeredPane)

 Content pane

Glass pane: This is the first pane and is very close to the monitor’s screen. Any

components to be displayed in the foreground are attached to this glass pane. To

reach this glass pane we use getGlassPane() method of JFrame class, which return

Component class object.

Root Pane: This pane is below the glass pane. Any components to be displayed in the

background are displayed in this frame. To go to the root pane, we can use

getRootPane() method of JFrame class, which returns JRootPane object.

Layered pane: This pane is below the root pane. When we want to take several

components as a group, we attach them in the layered pane. We can reach this

pane by calling getLayeredPane() method of JFrame class which returns

JLayeredPane class object.

Conent pane: This is bottom most of all, Individual components are attached to this

pane. To reach this pane, we can call getContentPane() method of JFrame class

which returns Container class object.

2. Lightweight containers – containers do inherit JComponent. An example of a

lightweight container is JPanel, which is a general-purpose container. Lightweight

containers are often used to organize and manage groups of related components.

Unit 5 Introduction to Swings & Networking

JFrame:

Frame represents a window with a title bar and borders. Frame becomes the basis for

creating the GUIs for an application because all the components go into the frame.

To create a frame, we have to create an object to JFrame class in swing as

JFrame jf=new JFrame(); // create a frame without title

JFrame jf=new JFrame(“title”); // create a frame with title

To close the frame, use setDefaultCloseOperation() method of JFrame class

setDefaultCloseOperation(constant)

where constant values are

JFrame.EXIT_ON_CLOSE
This closes the application upon clicking the
close button

JFrame.DISPOSE_ON_CLOSE
This closes the application upon clicking the
close button

JFrame.DO_NOTHING_ON_CLOSE
This will not perform any operation upon
clicking close button

JFrame.HIDE_ON_CLOSE
This hides the frame upon clicking close
button

Example:

import javax.swing.*;

class FrameDemo

{

public static void main(String arg[])

{

JFrame jf=new JFrame("PVPSIT");

jf.setSize(200,200);

jf.setVisible(true);

jf.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

}

}

Example: To set the background

import javax.swing.*;

import java.awt.*;

class FrameDemo

{

public static void main(String arg[])

{

JFrame jf=new JFrame("PVPSIT");

jf.setSize(200,200);

jf.setVisible(true);

Container c=jf.getContentPane();

c.setBackground(Color.green);

}

Unit 5 Introduction to Swings & Networking

}

JApplet:

Fundamental to Swing is the JApplet class, which extends Applet. Applets that use

Swing must be subclasses of JApplet. JApplet is rich with functionality that is not found in

Applet. For example, JApplet supports various “panes,” such as the content pane, the glass

pane, and the root pane.

One difference between Applet and JApplet is, When adding a component to an

instance of JApplet, do not invoke the add() method of the applet. Instead, call add() for

the content pane of the JApplet object.

The content pane can be obtained via the method shown here:

Container getContentPane()

The add() method of Container can be used to add a component to a content pane.

Its form is shown here:

void add(comp)

Here, comp is the component to be added to the content pane.

JComponent:

The class JComponent is the base class for all Swing components except top-level

containers. To use a component that inherits from JComponent, you must place the

component in a containment hierarchy whose root is a top-level SWING container.

Constructor: JComponent();

The following are the JComponent class's methods to manipulate the appearance of

the component.

public int getWidth ()
Returns the current width of this component
in pixel.

public int getHeight ()
Returns the current height of this component
in pixel.

public int getX()
Returns the current x coordinate of the
component's top-left corner.

public int getY ()
Returns the current y coordinate of the
component's top-left corner.

public java.awt.Graphics getGraphics()
Returns this component's Graphics object you

can draw on. This is useful if you want
to change the appearance of a component.

public void setBackground (java.awt.Color bg) Sets this component's background color.

public void setEnabled (boolean enabled)
Sets whether or not this component is
enabled.

public void setFont (java.awt.Font font)
Set the font used to print text on this
component.

public void setForeground (java.awt.Color fg) Set this component's foreground color.

public void setToolTipText(java.lang.String text) Sets the tool tip text.

public void setVisible (boolean visible)
Sets whether or not this component is
visible.

Unit 5 Introduction to Swings & Networking

JLabel:

• Jlabel is used to display a text

– JLabel(string str)

– JLabel(Icon i)

– JLabel(String s, Icon i, int align)

• CENTER, LEFT, RIGHT, LEADING, TRAILING

• Icon – is an interface

– The easiest way to obtain icon is to use ImageIcon class. ImageIcon class

implements Icon interface.

Important Methods:

Icon getIcon()

String getText()

void setIcon(Icon icon)

void setText(String s)

JText Fields

The Swing text field is encapsulated by the JTextComponent class, which extends

JComponent. It provides functionality that is common to Swing text components. One of its

subclasses is JTextField, which allows you to edit one line of text. Some of its constructors

are shown here:

JTextField()

JTextField(int cols)

JTextField(String s, int cols)

JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text

field.

The following example illustrates how to create a text field. The applet begins by

getting its content pane, and then a flow layout is assigned as its layout manager. Next, a

JTextField object is created and is added to the content pane.

Example:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class MyFrame extends JFrame implements ActionListener

{

JLabel jl, jl2;

JTextField jtf;

MyFrame()

{

Unit 5 Introduction to Swings & Networking

setLayout(new FlowLayout());

jl=new JLabel("Enter your name");

jl2=new JLabel();

jtf=new JTextField("PVPSIT",15);

add(jl);

add(jtf);

add(jl2);

jtf.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

jl2.setText(jtf.getText());

}

}

class FrameDemo

{

public static void main(String arg[])

{

MyFrame f=new MyFrame();

f.setTitle("Welcome to Swings");

f.setSize(500,500);

f.setVisible(true);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

The JButton Class

The JButton class provides the functionality of a push button. JButton allows an

icon, a string, or both to be associated with the push button. Some of its constructors are

shown here:

JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.

Example:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class MyFrame extends JFrame implements ActionListener

{

JButton jb,jb1,jb2;

JLabel jl;

MyFrame()

{

setLayout(new FlowLayout());

jl=new JLabel();

Unit 5 Introduction to Swings & Networking

jb=new JButton("VRSEC");

ImageIcon ii=new ImageIcon("pvp.JPG");

jb1=new JButton("PVPSIT",ii);

ImageIcon ii2=new ImageIcon("bec.JPG");

jb2=new JButton("BEC", ii2);

add(jb); add(jb1); add(jb2); add(jl);

jb.addActionListener(this);

jb1.addActionListener(this);

jb2.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

jl.setText("You Pressed: "+ae.getActionCommand());

}

}

class FrameDemo

{

public static void main(String arg[])

{

MyFrame f=new MyFrame();

f.setTitle("Welcome to Swings");

f.setSize(500,500);

f.setVisible(true);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

JCheckBox:

The JCheckBox class, which provides the functionality of a check box, is a concrete

implementation of AbstractButton. Its immediate super class is JToggleButton, which

provides support for two-state buttons (true or false). Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check

box is initially selected. Otherwise, it is not.

The state of the check box can be changed via the following method:

void setSelected(boolean state)

Here, state is true if the check box should be checked.

When a check box is selected or deselected, an item event is generated. This is

handled by itemStateChanged(). Inside itemStateChanged(), the getItem() method gets

Unit 5 Introduction to Swings & Networking

the JCheckBox object that generated the event. The getText() method gets the text for that

check box and uses it to set the text inside the text field.

Example:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class MyFrame extends JFrame implements ItemListener

{

JCheckBox jcb,jcb1,jcb2;

JLabel jl;

MyFrame()

{

setLayout(new FlowLayout());

jl=new JLabel();

jcb=new JCheckBox("VRSEC");

jcb1=new JCheckBox("PVPSIT");

jcb2=new JCheckBox("BEC");

add(jcb); add(jcb1); add(jcb2); add(jl);

jcb.addItemListener(this);

jcb1.addItemListener(this);

jcb2.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

JCheckBox jc=(JCheckBox)ie.getItem();

jl.setText("You Selected :"+jc.getText());

}

}

class FrameDemo

{

public static void main(String arg[])

{

MyFrame f=new MyFrame();

f.setTitle("Welcome to Swings");

f.setSize(500,500);

f.setVisible(true);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

Unit 5 Introduction to Swings & Networking

JRadioButton:

Radio buttons are supported by the JRadioButton class, which is a concrete

implementation of AbstractButton. Its immediate superclass is JToggleButton, which

provides support for two-state buttons. Some of its constructors are shown here:

JRadioButton(Icon i)

JRadioButton(Icon i, boolean state)

JRadioButton(String s)

JRadioButton(String s, boolean state)

JRadioButton(String s, Icon i)

JRadioButton(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the button

is initially selected. Otherwise, it is not.

Radio buttons must be configured into a group. Only one of the buttons in that group

can be selected at any time. For example, if a user presses a radio button that is in a group,

any previously selected button in that group is automatically deselected. The ButtonGroup

class is instantiated to create a button group. Its default constructor is invoked for this

purpose. Elements are then added to the button group via the following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.

Radio button presses generate action events that are handled by actionPerformed().

The getActionCommand() method returns the text that is associated with a radio button and

uses it to set the text field.

Example:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class MyFrame extends JFrame implements ActionListener

{

JRadioButton jrb,jrb1,jrb2;

JLabel jl;

MyFrame()

{

setLayout(new FlowLayout());

jl=new JLabel();

jrb=new JRadioButton("VRSEC");

jrb1=new JRadioButton("PVPSIT");

jrb2=new JRadioButton("BEC");

add(jrb); add(jrb1); add(jrb2); add(jl);

ButtonGroup bg=new ButtonGroup();

bg.add(jrb); bg.add(jrb1); bg.add(jrb2);

Unit 5 Introduction to Swings & Networking

jrb.addActionListener(this);

jrb1.addActionListener(this);

jrb2.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

jl.setText("You Selected :"+ae.getActionCommand());

}

}

class FrameDemo

{

public static void main(String arg[])

{

MyFrame f=new MyFrame();

f.setTitle("Welcome to Swings");

f.setSize(500,500);

f.setVisible(true);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

JComboBox :

Swing provides a combo box (a combination of a text field and a drop-down list)

through the JComboBox class, which extends JComponent.

A combo box normally displays one entry. However, it can also display a drop-down

list that allows a user to select a different entry. You can also type your selection into the text

field.

Two of JComboBox’s constructors are shown here:

JComboBox()

JComboBox(Vector v)

Here, v is a vector that initializes the combo box. Items are added to the list of choices

via the addItem() method, whose signature is shown here:

void addItem(Object obj)

Here, obj is the object to be added to the combo box.

By default, a JComboBox component is created in read-only mode, which means the

user can only pick one item from the fixed options in the drop-down list. If we want to allow

the user to provide his own option, we can simply use the setEditable() method to make the

combo box editable.

Unit 5 Introduction to Swings & Networking

Example:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class MyFrame extends JFrame implements ItemListener

{

JComboBox jcb;

MyFrame()

{

setLayout(new FlowLayout());

String cities[]={"Amaravati","Guntur","Vijayawada","Vizag","Kurnool"};

jcb=new JComboBox(cities);

jcb.addItem("Tirupati");

jcb.setEditable(true);

add(jcb);

jcb.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

JOptionPane.showMessageDialog(null,jcb.getSelectedItem());

}

}

public class JComboBoxDemo

{

public static void main(String[] args)

{

}

}

 JList:

MyFrame jf = new MyFrame();

jf.setSize(500,500);

jf.setVisible(true);

jf.setTitle("Frame Example");

jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

• JList class is useful to create a list which displays a list of items and allows the user to

select one or more items.

– Constructors

• JList()

• JList(Object arr[])

• JList(Vector v)

– Methods

• getSelectedIndex() – returns selected item index

• getSelectedValue() – to know which item is selected in the list

• getSelectedIndices() – returns selected items into an array

• getSelectedValues() – returns selected items names into an array

14

• JList generates ListSelectionEvent

– ListSelectionListener

• void valueChanged(ListSelectionEvent)

– Package is javax.swing.event.*;

Example:

import javax.swing.*;

import javax.swing.event.*;

import java.awt.*;

import java.awt.event.*;

class MyFrame extends JFrame implements ListSelectionListener

{

JLabel jl;

JList j;

MyFrame()

{

setLayout(new FlowLayout());

jl=new JLabel("Choose one college..");

String arr[]={"BEC", "PVPSIT","RVR&JC", "VRSEC"};

j=new JList(arr);

add(jl);

add(j);

j.setToolTipText("I am PVPSIT");

j.addListSelectionListener(this);

}

public void valueChanged(ListSelectionEvent le)

{

JOptionPane.showMessageDialog(null, j.getSelectedValue());

}

}

class FrameDemo2

{

public static void main(String arg[])

{

MyFrame f=new MyFrame();

f.setTitle("Welcome to Swings");

f.setSize(500,500);

f.setVisible(true);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

15

PROGRESS BAR

ProgressBar is a part of Java Swing package. JProgressBar visually displays

the progress of some specified task. JProgressBar shows the percentage of

completion of specified task.The progress bar fills up as the task reaches it

completion. In addition to show the percentage of completion of task, it can also

display some text .

Constructors of JProgressBar :

1. JProgressBar() : creates an progress bar with no text on it;

2. JProgressBar(int orientation) : creates an progress bar with a specified

orientation. if SwingConstants.VERTICAL is passed as argument a vertical

progress bar is created, if SwingConstants.HORIZONTAL is passed as

argument a horizontal progress bar is created.

3. JProgressBar(int min, int max) : creates an progress bar with specified

minimum and maximum value.

4. JProgressBar(int orientation, int min, int max) : creates an progress bar

with specified minimum and maximum value and a specified orientation.if

SwingConstants.VERTICAL is passed as argument a vertical progress bar is

created, if SwingConstants.HORIZONTAL is passed as argument a

horizontal progress bar is created.

Commonly used methods of JProgressBar are :

1. int getMaximum() : returns the progress bar’s maximum value.

2. int getMinimum() : returns the progress bar’s minimum value.

3. String getString() : get the progress bar’s string representation of current

value.

4. void setMaximum(int n) : sets the progress bar’s maximum value to the

value n.

16

5. void setMinimum(int n) : sets the progress bar’s minimum value to the

value n.

6. void setValue(int n) : set Progress bar’s current value to the value n.

7. void setString(String s) : set the value of the progress String to the String s.

Write a program using JProgressBar to show progress of Progress Bar when user

clicks on JButton in Java Programming

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.*;

class MyFrame extends JFrame implements ActionListener {

 JProgressBar pb;

 JButton b1 = new JButton("LOGIN");

 MyFrame() {

 setLayout(null);

 pb = new JProgressBar(1, 100);

 pb.setValue(0);

 pb.setStringPainted(true);

 b1.setBounds(20, 20, 80, 25);

 pb.setBounds(110, 20, 200, 25);

 pb.setVisible(false);

 add(b1);

 add(pb);

 b1.addActionListener(this);

 setResizable(false);

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

17

 public void actionPerformed(ActionEvent e) {

 int i = 0;

 if (e.getSource() == b1) {

 pb.setVisible(true);

 try {

 while (i <= 100) {

 Thread.sleep(50);

 pb.paintImmediately(0, 0, 200, 25);

 pb.setValue(i);

 i++;

 }

 } catch (Exception e1) {

 System.out.print("Caughted exception is =" + e1);

 }

 }

 }

}

public class Progress {

 public static void main(String arg[]) {

 MyFrame m = new MyFrame();

 m.setSize(330, 100);

 m.setVisible(true);

 }

}

OP:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg7huCNvvU2en6LvmL12KMFTLBDELa00ovfMmzqkxyB9PsXyr6pdulCimNEL3cTQHEt8IyYql8wfvIqdO6zRuDAv3VkwzwFnVExDlZ6Z-J1pY_M3JLZFajEnfKPd3hMueBHSVZLdEHmCAo/s1600/progress.PNG

18

Difference Between a Java Application and a Java Applet

Parameters Java Application Java Applet

Meaning and Basics A Java Application is a type of program

that can get independently executed on a

computer.

A Java Applet is a small program that

makes use of another application

program so that we can execute it.

Main() Method The execution of the Java application

begins with the main() method. The usage

of the main() is a prerequisite here.

The Java applet initializes through the

init(). It does not require the usage of

any main() method.

Execution It cannot run alone, but it requires JRE for

its execution.

It cannot run independently but

requires APIs for its execution (Ex.

APIs like Web API).

Installation One needs to install a Java application

priorly and explicitly on a local computer.

A Java applet does not require any

prior installation.

Communication

among other Servers

It is possible to establish communication

with the other servers.

It cannot really establish

communication with the other

servers.

Read and Write

Operations

The Java applications are capable of

performing the read and write operations

on various files present in a local

computer.

A Java applet cannot perform these

applications on any local computer.

Restrictions These can easily access the file or data

present in a computer system or device.

These cannot access the file or data

available on any system or local

computers.

Security Java applications are pretty trusted, and

thus, come with no security concerns.

Java applets are not very trusted.

Thus, they require security.

19

32 GUI Programming in Java |Madhu T.

Applet
An applet is a Java program that runs in a Web browser. (or) Applet is a special

type of program that is embedded in the webpage to generate the dynamic content. It

runs inside the browser and works at client side.

Any applet in Java is a class that extends the java.applet.Applet class.

Advantage of Applet

There are many advantages of applet. They are as follows:

• It works at client side so less response time.

• Secured

• It can be executed by browsers running under many platforms, including Linux,

Windows, Mac Os etc.

Hierarchy of Applet :

As displayed in the diagram, Applet class extends Panel. Panel class extends

Container, which is the subclass of Component. Where Object class is base class for

all the classes in java.

JApplet class is extension of Applet class.

33 GUI Programming in Java |Madhu T.

Lifecycle of Applet:

There are 5 lifecycle methods of Applet, Those are

public void init(): is used to initialized the Applet. It is invoked only once.

public void start(): is invoked after the init() method or browser is maximized. It is

used to start the Applet.

public void paint(Graphics g): is invoked immediately after the start() method,

and this method helps to create Applet’s GUI such as a colored background, drawing

and writing.

public void stop(): is used to stop the Applet. It is invoked when Applet is stop or

browser is minimized.

public void destroy(): is used to destroy the Applet. It is invoked only once.

Remember:

java.applet.Applet class provides 4 methods (init,start,stop & destroy) and

java.awt.Graphics class provides 1 method (paint) to create Applet.

34 GUI Programming in Java |Madhu T.

Simple example of Applet:

 To execute an Applet, First Create an applet and compile it just like a simple java

program.

First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet

{

public void paint(Graphics g){

g.drawString(“Welcome to Applet",50,150);

}

}

Compile:

D:\> javac First.java

After successful compilation, we get First.class file.

 After that create an html file and place the applet code in html file.

First.html

<html>

<body>

<applet code="First.class" width="300" height="300">

</applet>

</body>

</html>

Execute:

D:\> appletviewer First.html

35 GUI Programming in Java |Madhu T.

Displaying Graphics in Applet:

 java.awt.Graphics class provides many methods for graphics programming.

The Commonly used methods of Graphics class:

• drawString(String str, int x, int y): is used to draw the specified string.

• drawRect(int x, int y, int width, int height): draws a rectangle with the specified

width and height.

• fillRect(int x, int y, int width, int height): is used to fill rectangle with the default

color and specified width and height.

• drawOval(int x, int y, int width, int height): is used to draw oval with the

specified width and height.

• fillOval(int x, int y, int width, int height): is used to fill oval with the default color

and specified width and height.

• drawLine(int x1, int y1, int x2, int y2): is used to draw line between the

points(x1, y1) and (x2, y2).

• setColor(Color c): is used to set the graphics current color to the specified color.

• setFont(Font font): is used to set the graphics current font to the specified font.

Example: GraphicsDemo.java

import java.applet.Applet;

import java.awt.*;

public class GraphicsDemo extends Applet

{

public void paint(Graphics g)

{

g.setColor(Color.red);

g.drawString("Welcome",50, 50);

g.drawLine(20,30,20,300);

g.drawRect(70,100,30,30);

g.fillRect(170,100,30,30);

g.drawOval(70,200,30,30);

g.setColor(Color.pink);

g.fillOval(170,200,30,30);

}

}

36 GUI Programming in Java |Madhu T.

GraphicsDemo.html

<html>

<body>

<applet code="GraphicsDemo.class" width="300" height="300">

</applet>

</body>

</html>

Execution:

D:\> javac GraphicsDemo.java

D:\> appletviewer GraphicsDemo.html

Components of Applet:

 The components of AWT are the components of Applet,i.e we can use AWT

components (Button,TextField,Checkbox, TextArea,Choice & etc.…) in applet.

 As we perform event handling in AWT or Swing, we can perform it in applet also.

37 GUI Programming in Java |Madhu T.

Let's see the simple example of components and event handling in applet that prints a

message by click on the button.

Example: AppletComponents.java

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class AppletComponents extends Applet implements ActionListener{

Button b;

TextField tf;

public void init(){

tf=new TextField();

tf.setBounds(80,40,150,20);

b=new Button("Click");

b.setBounds(80,120,80,30);

add(b);add(tf);

b.addActionListener(this);

setLayout(null);

}

public void actionPerformed(ActionEvent e)

{

 tf.setText("Welcome");

}

}

AppletComponents.html

<html>

<body>

<applet code="AppletComponents.class" width="300" height="300">

</applet>

</body>

</html>

Execution:

D:\>javac AppletComponents.java

D:\>appletviewer AppletComponents.html

38 GUI Programming in Java |Madhu T.

JApplet Class:

As we prefer Swing to AWT. Now we can use JApplet that can have all the

controls of swing.

 The JApplet class extends the Applet class.

The components of swing are the components of JApplet,i.e we can use swing

components (JButton,JTextField,JCheckBox, JTextArea,JList & etc.…) in JApplet.

Example: JAppletComponents.java

import java.applet.*;

import javax.swing.*;

import java.awt.event.*;

public class JAppletComponents extends JApplet implements ActionListener

{

JButton b;

JTextField tf;

public void init(){

tf=new JTextField();

tf.setBounds(50,40,150,20);

b=new JButton("Click");

b.setBounds(50,100,70,30);

add(b);add(tf);

b.addActionListener(this);

setLayout(null);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome");

}

}

JAppletComponents.html

<html>

<body>

<applet code="JAppletComponents.class" width="300" height="300">

</applet>

</body>

</html>

Execution:

D:\>javac JAppletComponents.java

D:\>appletviewer JAppletComponents.html

